Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 364
Filtrar
1.
Int J Mol Sci ; 23(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35563478

RESUMO

Lysyl oxidases are multifunctional proteins derived from five lysyl oxidase paralogues (LOX) and lysyl oxidase-like 1 through lysyl oxidase-like 4 (LOXL1-LOXL4). All participate in the biosynthesis of and maturation of connective tissues by catalyzing the oxidative deamination of lysine residues in collagens and elastin, which ultimately results in the development of cross-links required to function. In addition, the five LOX genes have been linked to fibrosis and cancer when overexpressed, while tumor suppression by the propeptide derived from pro-LOX has been documented. Similarly, in diabetic retinopathy, LOX overexpression, activity, and elevated LOX propeptide have been documented. The proteolytic processing of pro-forms of the respective proteins is beginning to draw attention as the resultant peptides appear to exhibit their own biological activities. In this review we focus on the LOX paralogue, and what is known regarding its extracellular biosynthetic processing and the still incomplete knowledge regarding the activities and mechanisms of the released lysyl oxidase propeptide (LOX-PP). In addition, a summary of the roles of both LOX and LOX-PP in diabetic retinopathy, and brief mentions of the roles for LOX and closely related LOXL1 in glaucoma, and keratoconus, respectively, are included.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Neoplasias , Proteína-Lisina 6-Oxidase , Colágeno/metabolismo , Diabetes Mellitus/enzimologia , Diabetes Mellitus/metabolismo , Retinopatia Diabética/enzimologia , Retinopatia Diabética/metabolismo , Humanos , Neoplasias/enzimologia , Neoplasias/metabolismo , Peptídeos , Proteína-Lisina 6-Oxidase/metabolismo
2.
Oxid Med Cell Longev ; 2021: 1641717, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34725563

RESUMO

Clinical observations found vision-threatening diabetic retinopathy (DR) occurs in both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) patients, but T1DM may perform more progressive retinal abnormalities at the same diabetic duration with or without clinical retinopathy. In the present study, T1DM and T2DM patients without manifestations of DR were included in our preliminary clinical retrospective observation study to investigate the differentiated retinal function at the preclinical stage. Then, T1DM and T2DM rat models with 12-week diabetic duration were constructed to explore the potential mechanism of the discrepancy in retinal disorders. Our data demonstrated T1DM patients presented a poor retinal function, a higher allele frequency for ALDH2GA/AA, and a depressed aldehyde dehydrogenase 2 (ALDH2) activity and silent information regulator 1 (SIRT1) level, compared to T2DM individuals. In line with this, higher amplitudes of neurovascular function-related waves of electroretinograms were found in T2DM rats. Furthermore, the retinal outer nuclear layers were reduced in T1DM rats. The levels of retinal oxidative stress biomarkers including total reactive oxygen species, NADPH oxidase 4 and mitochondrial DNA damage, and inflammatory indicators covering inducible/endothelial nitric acid synthase ratio, interleukin-1, and interleukin-6 were obviously elevated. Notably, the level of retinal ALDH2 and SIRT1 in T1DM rats was significantly diminished, while the expression of neovascularization factors was dramatically enhanced compared to T2DM. Together, our data indicated that the ALDH2/SIRT1 deficiency resulted in prominent oxidative stress and was in association with DR progression. Moreover, a differentiating ALDH2/SIRT1 expression may be responsible for the dissimilar severity of DR pathological processes in chronic inflammatory-related T1DM and T2DM.


Assuntos
Aldeído-Desidrogenase Mitocondrial/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 2/complicações , Retinopatia Diabética/etiologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Retina/enzimologia , Sirtuína 1/metabolismo , Adulto , Aldeído-Desidrogenase Mitocondrial/genética , Animais , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 1/enzimologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/genética , Retinopatia Diabética/enzimologia , Retinopatia Diabética/genética , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos Sprague-Dawley , Retina/patologia , Estudos Retrospectivos
3.
Exp Eye Res ; 213: 108845, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34800480

RESUMO

Diabetic retinopathy (DR) is the leading cause of vision impairment in working age adults. In addition to hyperglycemia, retinal inflammation is an important driving factor for DR development. Although DR is clinically described as diabetes-induced damage to the retinal blood vessels, several studies have reported that metabolic dysregulation occurs in the retina prior to the development of microvascular damage. The two most commonly affected metabolic pathways in diabetic conditions are glycolysis and the glutamate pathway. We investigated the role of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and glutamine synthetase (GS) in an in-vitro model of DR incorporating high glucose and pro-inflammatory cytokines. We found that GAPDH and GS enzyme activity were not significantly affected in hyperglycemic conditions or after exposure to cytokines alone, but were significantly decreased in the DR model. This confirmed that pro-inflammatory cytokines IL-1ß and TNFα enhance the hyperglycemic metabolic deficit. We further investigated metabolite and amino acid levels after specific pharmacological inhibition of GAPDH or GS in the absence/presence of pro-inflammatory cytokines. The results indicate that GAPDH inhibition increased glucose and addition of cytokines increased lactate and ATP levels and reduced glutamate levels. GS inhibition did not alter retinal metabolite levels but the addition of cytokines increased ATP levels and caused glutamate accumulation in Müller cells. We conclude that it is the action of pro-inflammatory cytokines concomitantly with the inhibition of the glycolytic or GS mediated glutamate recycling that contribute to metabolic dysregulation in DR. Therefore, in the absence of good glycemic control, therapeutic interventions aimed at regulating inflammation may prevent the onset of early metabolic imbalance in DR.


Assuntos
Retinopatia Diabética/enzimologia , Inibidores Enzimáticos/farmacologia , Glutamato-Amônia Ligase/antagonistas & inibidores , Gliceraldeído-3-Fosfato Desidrogenases/antagonistas & inibidores , Interleucina-1beta/farmacologia , Retina/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Western Blotting , Retinopatia Diabética/patologia , Feminino , Glucose/farmacologia , Hiperglicemia/metabolismo , Ácido Iodoacético/farmacologia , L-Lactato Desidrogenase/metabolismo , Metionina Sulfoximina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Retina/enzimologia , Retina/patologia
4.
Pharmacol Res ; 170: 105713, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34098071

RESUMO

Diabetic retinopathy (DR) is a major complication of diabetes and a leading cause of blindness and visual impairment. This study focuses on the function of lysine acetyltransferase 1 (KAT1) in the progression of DR and the epigenetic mechanism. A mouse model with DR was induced by streptozotocin (STZ). Abundantly expressed genes in STZ-induced mice were analyzed. KAT1 was found to be significantly downregulated in the retinal tissues of model mice. Retinal microvascular endothelial cells (RMECs) and retinal Müller cells (rMCs) were cultured in high-glucose medium for in vitro studies. Upregulation of KAT1 suppressed inflammation, neovascularization, and vascular leakage in mouse retinal tissues, and it reduced the activity and inflammatory responses in rMCs, as well as the proliferation and metastatic potential of RMECs. KAT1 activated the transcription activity of YTHDF2 through histone acetylation of the promoter, and YTHDF2 triggered the instability of ITGB1 mRNA to induce mRNA degradation in an m6A manner. The activities of rMCs and RMECs were increased by sh-YTHDF2 but suppressed by sh-ITGB1. The FAK/PI3K/AKT signaling pathway was suppressed upon ITGB1 silencing. Collectively, this study demonstrated that KAT1 triggers YTHDF2-mediated ITGB1 mRNA instability to alleviate the progression of DR.


Assuntos
Retinopatia Diabética/enzimologia , Células Endoteliais/enzimologia , Células Ependimogliais/enzimologia , Histona Acetiltransferases/metabolismo , Integrina beta1/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adenina/análogos & derivados , Adenina/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Modelos Animais de Doenças , Progressão da Doença , Células Endoteliais/patologia , Células Ependimogliais/patologia , Quinase 1 de Adesão Focal/metabolismo , Histona Acetiltransferases/genética , Integrina beta1/genética , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Estreptozocina
5.
Invest Ophthalmol Vis Sci ; 62(7): 6, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34086044

RESUMO

Purpose: To investigate the expression of angiotensin-converting enzyme 2 (ACE2), the receptor for SARS-CoV-2 in human retina. Methods: Human post-mortem eyes from 13 non-diabetic control cases and 11 diabetic retinopathy cases were analyzed for the expression of ACE2. To compare the vascular ACE2 expression between different organs that involve in diabetes, the expression of ACE2 was investigated in renal specimens from nondiabetic and diabetic nephropathy patients. Expression of TMPRSS2, a cell-surface protease that facilitates SARS-CoV-2 entry, was also investigated in human nondiabetic retinas. Primary human retinal endothelial cells (HRECs) and primary human retinal pericytes (HRPCs) were further used to confirm the vascular ACE2 expression in human retina. Results: We found that ACE2 was expressed in multiple nonvascular neuroretinal cells, including the retinal ganglion cell layer, inner plexiform layer, inner nuclear layer, and photoreceptor outer segments in both nondiabetic and diabetic retinopathy specimens. Strikingly, we observed significantly more ACE2 positive vessels in the diabetic retinopathy specimens. By contrast, in another end-stage organ affected by diabetes, the kidney, ACE2 in nondiabetic and diabetic nephropathy showed apical expression of ACE2 tubular epithelial cells, but no endothelial expression in glomerular or peritubular capillaries. Western blot analysis of protein lysates from HRECs and HRPCs confirmed expression of ACE2. TMPRSS2 expression was present in multiple retinal neuronal cells, vascular and perivascular cells, and Müller glia. Conclusions: Together, these results indicate that retina expresses ACE2 and TMPRSS2. Moreover, there are increased vascular ACE2 expression in diabetic retinopathy retinas.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Retinopatia Diabética/enzimologia , Receptores Virais/metabolismo , Retina/enzimologia , SARS-CoV-2/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Sítios de Ligação , Western Blotting , Células Cultivadas , Nefropatias Diabéticas/enzimologia , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/virologia , Retinopatia Diabética/patologia , Retinopatia Diabética/virologia , Endotélio Vascular/enzimologia , Endotélio Vascular/virologia , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Pericitos/enzimologia , Pericitos/virologia , Vasos Retinianos/enzimologia , Vasos Retinianos/patologia , Vasos Retinianos/virologia , Serina Endopeptidases/metabolismo
6.
Exp Eye Res ; 207: 108559, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33848522

RESUMO

Diabetic retinopathy is a multifactorial microvascular complication, and its pathogenesis hasn't been fully elucidated. The irreversible oxidation of cysteine 674 (C674) in the sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) was increased in the type 1 diabetic retinal vasculature. SERCA2 C674S knock-in (SKI) mouse line that half of C674 was replaced by serine 674 (S674) was used to study the effect of C674 inactivation on retinopathy. Compared with wild type (WT) mice, SKI mice had increased number of acellular capillaries and pericyte loss similar to those in type 1 diabetic WT mice. In the retina of SKI mice, pro-apoptotic proteins and intracellular Ca2+-dependent signaling pathways increased, while anti-apoptotic proteins and vessel density decreased. In endothelial cells, C674 inactivation increased the expression of pro-apoptotic proteins, damaged mitochondria, and induced cell apoptosis. These results suggest that a possible mechanism of retinopathy induced by type 1 diabetes is the interruption of calcium homeostasis in the retina by oxidation of C674. C674 is a key to maintain retinal health. Its inactivation can cause retinopathy similar to type 1 diabetes by promoting apoptosis. SERCA2 might be a potential target for the prevention and treatment of diabetic retinopathy.


Assuntos
Cisteína/genética , Retinopatia Diabética/enzimologia , Retículo Endoplasmático/enzimologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/enzimologia , Adenoviridae , Animais , Apoptose , Western Blotting , Calcineurina/metabolismo , Capilares/enzimologia , Capilares/patologia , Cisteína/metabolismo , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/enzimologia , Diabetes Mellitus Tipo 1/genética , Retinopatia Diabética/patologia , Técnica Indireta de Fluorescência para Anticorpo , Técnicas de Introdução de Genes , Inativação Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Imuno-Histoquímica , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias/metabolismo , Oxirredução , Reação em Cadeia da Polimerase em Tempo Real , Vasos Retinianos/enzimologia , Vasos Retinianos/patologia , Transdução de Sinais , Estreptozocina
7.
Commun Biol ; 4(1): 248, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627831

RESUMO

ßA3/A1-crystallin, a lens protein that is also expressed in astrocytes, is produced as ßA3 and ßA1-crystallin isoforms by leaky ribosomal scanning. In a previous human proteome high-throughput array, we found that ßA3/A1-crystallin interacts with protein tyrosine phosphatase 1B (PTP1B), a key regulator of glucose metabolism. This prompted us to explore possible roles of ßA3/A1-crystallin in metabolism of retinal astrocytes. We found that ßA1-crystallin acts as an uncompetitive inhibitor of PTP1B, but ßA3-crystallin does not. Loss of ßA1-crystallin in astrocytes triggers metabolic abnormalities and inflammation. In CRISPR/cas9 gene-edited ßA1-knockdown (KD) mice, but not in ßA3-knockout (KO) mice, the streptozotocin (STZ)-induced diabetic retinopathy (DR)-like phenotype is exacerbated. Here, we have identified ßA1-crystallin as a regulator of PTP1B; loss of this regulation may be a new mechanism by which astrocytes contribute to DR. Interestingly, proliferative diabetic retinopathy (PDR) patients showed reduced ßA1-crystallin and higher levels of PTP1B in the vitreous humor.


Assuntos
Astrócitos/enzimologia , Retinopatia Diabética/enzimologia , Metabolismo Energético , Glucose/metabolismo , Mitocôndrias/enzimologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Retina/enzimologia , Cadeia A de beta-Cristalina/metabolismo , Animais , Astrócitos/patologia , Estudos de Casos e Controles , Células Cultivadas , Cristalinas/genética , Cristalinas/metabolismo , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Modelos Animais de Doenças , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/patologia , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Ratos Sprague-Dawley , Retina/patologia , Cadeia A de beta-Cristalina/genética
8.
Exp Biol Med (Maywood) ; 246(8): 877-887, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33423553

RESUMO

Retinal pigment epithelial cells are closely associated with the pathogenesis of diabetic retinopathy. The mechanism by which diabetes impacts retinal pigment epithelial cell function is of significant interest. Sirtuins are an important class of proteins that primarily possess nicotinamide adenine dinucleotide-dependent deacetylases activity and involved in various cellular physiological and pathological processes. Here, we aimed to examine the role of sirtuins in the induction of diabetes-associated retinal pigment epithelial cell dysfunction. High glucose and platelet-derived growth factor (PDGF) treatment induced epithelial-mesenchymal transition and the migration of retinal pigment epithelial cells, and decreased sirtuin-3 expression. Sirtuin-3 knockdown using siRNA increased epithelial-mesenchymal transition and migration of retinal pigment epithelial cells. In contrast, sirtuin-3 overexpression attenuated the effects caused by high glucose and PDGF on epithelial-mesenchymal transition and migration of retinal pigment epithelial cells, suggesting that sirtuin-3 deficiency contributed to retinal pigment epithelial cell dysfunction induced by high glucose and PDGF. Mechanistically, sirtuin-3 deficiency induced retinal pigment epithelial cell dysfunction by the overproduction of mitochondrial reactive oxygen species. These results suggest that sirtuin-3 deficiency mediates the migration of retinal pigment epithelial cells, at least partially by increasing mitochondrial oxidative stress, and shed light on the importance of sirtuin-3 and mitochondrial reactive oxygen species as potential targets in diabetic retinopathy therapy.


Assuntos
Movimento Celular , Retinopatia Diabética , Células Epiteliais/enzimologia , Mitocôndrias/enzimologia , Estresse Oxidativo , Epitélio Pigmentado da Retina/enzimologia , Sirtuína 3/deficiência , Linhagem Celular , Retinopatia Diabética/enzimologia , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Células Epiteliais/patologia , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Epitélio Pigmentado da Retina/patologia , Sirtuína 3/metabolismo
9.
Mol Cell Biochem ; 476(5): 2099-2109, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33515385

RESUMO

NADPH oxidase (NOX) is a main producers of reactive oxygen species (ROS) that may contribute to the early pathogenesis of diabetic retinopathy (DR). ROS has harmful effects on endogenous neuro-survival factors brain-derived neurotrophic factor (BDNF) and sirtuin 1 (SIRT1) are necessary for the growth and survival of the retina. The role of NOX isoforms NOX4 in triggering ROS in DR is not clear. Here we determine the protective effects of a plant-derived NOX inhibitor apocynin (APO) on NOX4-induced ROS production which may contribute to the depletion of survival factors BDNF/SIRT1 or cell death in the diabetic retinas. Human retinal Müller glial cells (MGCs) were treated with hypoxia mimetic agent cobalt chloride (CoCl2) in the absence or presence of APO. Molecular analysis demonstrates that NOX4 is upregulated in CoCl2-treated MGCs and in the diabetic retinas. Increased NOX4 was accompanied by the downregulation of BDNF/SIRT1 expression or in the activation of apoptotic marker caspase-3. Whereas, APO treatment downregulates NOX4 and subsequently upregulates BDNF/SIRT1 or alleviate caspase-3 expression. Accordingly, in the diabetic retina we found a positive correlation in NOX4 vs ROS (p = 0.025; R2 = 0.488) and caspase-3 vs ROS (p = 0.04; R2 = 0.428); whereas a negative correlation in BDNF vs ROS (p = 0.009; R2 = 0.596) and SIRT1 vs ROS (p = 0.0003; R2 = 0.817) respectively. Taken together, NOX4-derived ROS could be a main contributor in downregulating BDNF/SIRT1 expression or in the activation of caspase-3. Whereas, APO treatment may minimize the deleterious effects occurring due to hyperglycemia and/or diabetic mimic hypoxic condition in early pathogenesis of DR.


Assuntos
Acetofenonas/farmacologia , Diabetes Mellitus Experimental/enzimologia , Retinopatia Diabética/enzimologia , Células Ependimogliais/enzimologia , NADPH Oxidase 4/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Retina/enzimologia , Animais , Linhagem Celular , Diabetes Mellitus Experimental/patologia , Retinopatia Diabética/patologia , Células Ependimogliais/patologia , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Retina/patologia
10.
Biomed Pharmacother ; 137: 111274, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33517190

RESUMO

Oxidative stress and inflammation are important pathogenic factors of diabetic retinopathy (DR). DR remains the most common ocular complication caused by diabetes mellitus (DM) and is the leading cause of visual impairment in working-aged people worldwide. Melatonin has attracted extensive attention due to its potent antioxidant and anti-inflammatory effects. In the present study, melatonin inhibited oxidative stress and inflammation by enhancing the expression and activity of silent information regulator factor 2-related enzyme 1 (Sirt1) both in in vitro and in vivo models of DR, and the Sirt1 inhibitor EX-527 counteracted melatonin-mediated antioxidant and anti-inflammatory effects on Müller cells. Moreover, melatonin enhanced Sirt1 activity through the maternally expressed gene 3 (MEG3)/miR-204 axis, leading to the deacetylation of the Sirt1 target genes forkhead box o1 (Foxo1) and nuclear factor kappa B (NF-κB) subunit p65, eventually contribute to the alleviation of oxidative stress and inflammation. The study revealed that melatonin promotes the Sirt1 pathway, thereby protecting the retina from DM-induced damage.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Retinopatia Diabética/tratamento farmacológico , Células Ependimogliais/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Melatonina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Sirtuína 1/metabolismo , Acetilação , Animais , Animais Recém-Nascidos , Retinopatia Diabética/enzimologia , Retinopatia Diabética/patologia , Ativação Enzimática , Células Ependimogliais/enzimologia , Células Ependimogliais/patologia , Proteína Forkhead Box O1/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Fator de Transcrição RelA/metabolismo
11.
Arterioscler Thromb Vasc Biol ; 41(1): e46-e62, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33176446

RESUMO

OBJECTIVE: Diabetic retinopathy, one of retinal vasculopathy, is characterized by retinal inflammation, vascular leakage, blood-retinal barrier breakdown, and neovascularization. However, the molecular mechanisms that contribute to diabetic retinopathy progression remain unclear. Approach and Results: Tpl2 (tumor progression locus 2) is a protein kinase implicated in inflammation and pathological vascular angiogenesis. Nε-carboxymethyllysine (CML) and inflammatory cytokines levels in human sera and in several diabetic murine models were detected by ELISA, whereas liquid chromatography-tandem mass spectrometry analysis was used for whole eye tissues. The CML and p-Tpl2 expressions on the human retinal pigment epithelium (RPE) cells were determined by immunofluorescence. Intravitreal injection of pharmacological inhibitor or NA (neutralizing antibody) was used in a diabetic rat model. Retinal leukostasis, optical coherence tomography, and H&E staining were used to observe pathological features. Sera of diabetic retinopathy patients had significantly increased CML levels that positively correlated with diabetic retinopathy severity and foveal thickness. CML and p-Tpl2 expressions also significantly increased in the RPE of both T1DM and T2DM diabetes animal models. Mechanistic studies on RPE revealed that CML-induced Tpl2 activation and NADPH oxidase, and inflammasome complex activation were all effectively attenuated by Tpl2 inhibition. Tpl2 inhibition by NA also effectively reduced inflammatory/angiogenic factors, retinal leukostasis in streptozotocin-induced diabetic rats, and RPE secretion of inflammatory cytokines. The attenuated release of angiogenic factors led to inhibited vascular abnormalities in the diabetic animal model. CONCLUSIONS: The inhibition of Tpl2 can block the inflammasome signaling pathway in RPE and has potential clinical and therapeutic implications in diabetes-associated retinal microvascular dysfunction.


Assuntos
Inibidores da Angiogênese/farmacologia , Retinopatia Diabética/prevenção & controle , Inflamassomos/antagonistas & inibidores , MAP Quinase Quinase Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Neovascularização Retiniana/prevenção & controle , Epitélio Pigmentado da Retina/efeitos dos fármacos , Idoso , Animais , Células Cultivadas , Estudos Transversais , Bases de Dados Factuais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/diagnóstico , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/enzimologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/enzimologia , Retinopatia Diabética/enzimologia , Retinopatia Diabética/etiologia , Retinopatia Diabética/patologia , Feminino , Humanos , Inflamassomos/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Gravidez , Estudos Prospectivos , Proteínas Proto-Oncogênicas/metabolismo , Neovascularização Retiniana/enzimologia , Neovascularização Retiniana/etiologia , Neovascularização Retiniana/patologia , Epitélio Pigmentado da Retina/enzimologia , Epitélio Pigmentado da Retina/patologia , Transdução de Sinais
12.
Diabetologia ; 64(3): 693-706, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33319325

RESUMO

AIMS/HYPOTHESIS: Diabetic retinopathy is characterised by retinal neurodegeneration and retinal vascular abnormalities, affecting one third of diabetic patients with disease duration of more than 10 years. Accumulated evidence suggests that serine racemase (SR) and D-serine are correlated with the pathogenesis of diabetic retinopathy and the deletion of the Srr gene reverses neurovascular pathologies in diabetic mice. Since D-serine content is balanced by SR synthesis and D-amino acid oxidase (DAAO) degradation, we examined the roles of DAAO in diabetic retinopathy and further explored relevant therapy. METHODS: Rats were used as a model of diabetes by i.p. injection of streptozotocin at the age of 2 months and blood glucose was monitored with a glucometer. Quantitative real-time PCR was used to examine Dao mRNA and western blotting to examine targeted proteins in the retinas. Bisulphite sequencing was used to examine the methylation of Dao mRNA promoter in the retinas. Intravitreal injection of DAAO-expressing adenovirus (AAV8-DAAO) was conducted one week before streptozotocin administration. Brain specific homeobox/POU domain protein 3a (Brn3a) immunofluorescence was conducted to indicate retinal ganglion cells at 3 months after virus injection. The permeability of the blood-retinal barrier was examined by Evans blue leakage from retinal capillaries. Periodic acid-Schiff staining and haematoxylin counterstaining were used to indicate retinal vasculature, which was further examined with double immunostaining at 7 months after virus injection. RESULTS: At the age of 12 months, DAAO mRNA and protein levels in retinas from diabetic animals were reduced to 66.2% and 70.4% of those from normal (control) animals, respectively. The Dao proximal promoter contained higher levels of methylation in diabetic than in normal retinas. Consistent with the observation, DNA methyltransferase 1 was increased in diabetic retinas. Injection of DAAO-expressing virus completely prevented the loss of retinal ganglion cells and the disruption of blood-retinal barrier in diabetic rats. Diabetic retinas contained retinal ganglion cells at a density of 54 ± 4/mm2, which was restored to 68 ± 9/mm2 by DAAO overexpression, similar to the levels in normal retinas. The ratio between the number of endothelial cells and pericytes in diabetic retinas was 6.06 ± 1.93/mm2, which was reduced to 3.42 ± 0.55/mm2 by DAAO overexpression; the number of acellular capillaries in diabetic retinas was 10 ± 5/mm2, which was restored to 6 ± 2/mm2 by DAAO overexpression, similar to the levels in normal retinas. Injection of the DAAO-expressing virus increased the expression of occludin and reduced gliosis, which were examined to probe the mechanism by which the disrupted blood-retinal barrier in diabetic rats was rescued and retinal neurodegeneration was prevented. CONCLUSIONS/INTERPRETATION: Altogether, overexpression of DAAO before the onset of diabetes protects against neurovascular abnormalities in retinas from diabetic rats, which suggests a novel strategy for preventing diabetic retinopathy. Graphical abstract.


Assuntos
Barreira Hematorretiniana/enzimologia , D-Aminoácido Oxidase/biossíntese , Retinopatia Diabética/prevenção & controle , Células Ganglionares da Retina/enzimologia , Animais , Barreira Hematorretiniana/patologia , Permeabilidade Capilar , D-Aminoácido Oxidase/genética , Metilação de DNA , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/enzimologia , Retinopatia Diabética/enzimologia , Retinopatia Diabética/etiologia , Retinopatia Diabética/patologia , Indução Enzimática , Masculino , Degeneração Neural , Regiões Promotoras Genéticas , Ratos Sprague-Dawley , Células Ganglionares da Retina/patologia , Fator de Transcrição Brn-3A/genética , Fator de Transcrição Brn-3A/metabolismo
13.
FASEB J ; 35(1): e21152, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33151576

RESUMO

Vitreous has been reported to prevent tumor angiogenesis, but our previous findings indicate that vitreous activate the signaling pathway of phosphoinositide 3-kinase (PI3K)/Akt, which plays a critical role in angiogenesis. The goal of this research is to determine which role of vitreous plays in angiogenesis-related cellular responses in vitro. We found that in human retinal microvascular endothelial cells (HRECs) vitreous activates a number of receptor tyrosine kinases including Anexelekto (Axl), which plays an important role in angiogenesis. Subsequently, we discovered that depletion of Axl using CRISPR/Cas9 and an Axl-specific inhibitor R428 suppress vitreous-induced Akt activation and cell proliferation, migration, and tuber formation of HRECs. Therefore, this line of research not only demonstrate that vitreous promotes angiogenesis in vitro, but also reveal that Axl is one of receptor tyrosine kinases to mediate vitreous-induced angiogenesis in vitro, thereby providing a molecular basis for removal of vitreous as cleanly as possible when vitrectomy is performed in treating patients with proliferative diabetic retinopathy.


Assuntos
Neovascularização Patológica/enzimologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Vasos Retinianos/enzimologia , Corpo Vítreo/enzimologia , Animais , Benzocicloeptenos/farmacologia , Sistemas CRISPR-Cas , Retinopatia Diabética/enzimologia , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Células HEK293 , Humanos , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Vasos Retinianos/patologia , Triazóis/farmacologia , Vitreorretinopatia Proliferativa/enzimologia , Vitreorretinopatia Proliferativa/genética , Vitreorretinopatia Proliferativa/patologia , Corpo Vítreo/patologia , Receptor Tirosina Quinase Axl
14.
Mol Vis ; 26: 355-358, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32476815

RESUMO

Despite decades of research, diabetic retinopathy remains the leading cause of blindness in working age adults. Treatments for early phases for the disease remain elusive. One pathway that appears to regulate neuronal, vascular, and inflammatory components of diabetic retinopathy is the cyclic adenosine 3', 5'-monophosphate (cAMP) pathway. In this review, we discuss the current literature on cAMP actions on the retina, with a focus on neurovascular changes commonly associated with preproliferative diabetic retinopathy models.


Assuntos
AMP Cíclico/metabolismo , Diabetes Mellitus/metabolismo , Retinopatia Diabética/metabolismo , Neurônios/metabolismo , Animais , Diabetes Mellitus/fisiopatologia , Retinopatia Diabética/enzimologia , Retinopatia Diabética/genética , Humanos , Inflamação/metabolismo , Neovascularização Patológica/metabolismo , Neurônios/patologia , Retina/metabolismo , Retina/patologia , Transdução de Sinais/genética
15.
Eur J Pharmacol ; 881: 173206, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32442539

RESUMO

The human body has a mechanism for balancing the generation and neutralization of reactive oxygen species. The body is exposed to many agents that are responsible for the generation of reactive oxygen/nitrogen species, which leads to disruption of the balance between generation of these species and oxidative stress defence mechanisms. Diabetes is a chronic pathological condition associated with prolonged hyperglycaemia. Prolonged elevation of level of glucose in the blood leads to the generation of reactive oxygen species. This generation of reactive oxygen species is responsible for the development of diabetic vasculopathy, which includes micro- and macrovascular diabetic complications. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is a membrane-bound enzyme responsible for the development of reactive oxygen species in hyperglycaemia. Phosphorylation of the cytosolic components of NOX, such as p47phox, p67phox, and RAC-1, in hyperglycaemia is one of the important causes of conversion of oxygen to reactive oxygen. Overexpression of NOX in pathological conditions is associated with activation of aldose reductase, advanced glycation end products, protein kinase C and the hexosamine pathway. In addition, NOX also promotes the activation of inflammatory cytokines, such as TGF-ß, TNF-α, NF-kß, IL-6, and IL-18, the activation of endothelial growth factors, such as VEGF and FGF, hyperlipidaemia, and the deposition of collagen. Thus, overexpression of NOX is linked to the development of diabetic complications. The present review focuses on the role of NOX, its associated pathways, and various NOX inhibitors in the management and treatment of diabetic complications, such as diabetic nephropathy, retinopathy, neuropathy and cardiomyopathy.


Assuntos
Cardiomiopatias Diabéticas/enzimologia , Nefropatias Diabéticas/enzimologia , Neuropatias Diabéticas/enzimologia , Retinopatia Diabética/enzimologia , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Cardiomiopatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/tratamento farmacológico , Retinopatia Diabética/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Humanos , NADPH Oxidases/antagonistas & inibidores , Estresse Oxidativo , Transdução de Sinais
16.
Sci Rep ; 10(1): 7456, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366925

RESUMO

The main therapeutic goal for diabetic retinopathy (DR) is to prevent vision loss in patients with diabetes mellitus. Identifying the visual complications at a preclinical juncture will offer an early therapeutic window for diagnosis and intervention. Very recently, we found that pyruvate kinase M2 isoform (PKM2) regulates visual function through regulation of a key enzyme, phosphodiesterase 6ß (Pde6ß), involved in modulating photoreceptor functions. A recent study showed that the activation of PKM2 protects mitochondrial integrity in diabetic nephropathy. In the present study, we examined the role of PKM2 in DR in a mouse model that has both phenotypes of obesity and type II diabetes. In DR, we found decreased expression of PKM2 and Pde6ß expression, but not PKM1. Consistent with decreased Pde6ß expression, the db/db mice had reduced rod photoreceptor function. We found increased pyruvate kinase activity and a decreased ratio of reduced/oxidized redox in db/db mouse retina compared with control retinas. There was no significant difference in the levels of lactate between db/db and control mouse retina. Our findings suggest that reduced expression of PKM2 with unchanged PKM1 expression might be responsible for higher pyruvate kinase activity in db/db mouse retina. Our studies suggest that PKM2 has a role in DR. The results support that PKM2 may serve as a therapeutic target in the treatment of DR.


Assuntos
Retinopatia Diabética/enzimologia , Piruvato Quinase/metabolismo , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Eletrorretinografia , Regulação Enzimológica da Expressão Gênica , Glicerol/metabolismo , Glicólise , Isoenzimas , Ácido Láctico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Fenótipo , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo
17.
Mol Vis ; 26: 277-290, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32300272

RESUMO

Purpose: Diabetic retinopathy (DR) is one of the most frequent complications of diabetes affecting the retina and eventually causing vision impairment. Emerging evidence suggests that inflammation plays a vital role in DR progression. In this study, we evaluated the early biochemical and neurochemical changes in mouse retinal explants to understand the contribution of proinflammatory cytokines to disease progression. Methods: DR was modeled in vitro by incubating mouse retinal explants in a physiological buffer supplemented with high glucose and the proinflammatory cytokines TNF-α and IL-1ß. Key metabolites of retinal energy metabolism, including glucose, lactate, ATP, glutamate, glutamine, and enzymes supporting retinal ATP levels were assessed 40 min after the application of high glucose and proinflammatory cytokines. As retinal energy metabolism is tightly coupled to retinal neurochemistry, we also determined the short-term effect on the amino acid distribution of glutamate, gamma aminobutyric acid (GABA), glutamine, and glycine. Results: The results indicated that the combined application of high glucose and proinflammatory cytokines increased retinal glucose, lactate, and ATP levels, and decreased retinal glutamate, without affecting glutamine levels or the enzymes supporting ATP levels. Moreover, we observed a statistically significant increase in ATP and glutamate release. Correspondingly, statistically significant alterations in amino acid distribution were observed in retinal explants coexposed to high glucose and proinflammatory cytokines. Conclusions: These data suggest that short-term exposure to proinflammatory cytokines contributes to the early biochemical and neurochemical changes caused by hyperglycemia, by affecting retinal energy metabolism and amino acid distribution. These data are consistent with the idea that early intervention to prevent inflammation-triggered loss of metabolic homeostasis in patients with diabetes is necessary to prevent DR progression.


Assuntos
Retinopatia Diabética/metabolismo , Glucose/farmacologia , Hiperglicemia/metabolismo , Interleucina-1beta/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Citocinas/farmacologia , Retinopatia Diabética/enzimologia , Metabolismo Energético/efeitos dos fármacos , Feminino , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Glicina/metabolismo , Hiperglicemia/enzimologia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Retina/efeitos dos fármacos , Retina/enzimologia , Retina/metabolismo , Ácido gama-Aminobutírico/metabolismo
18.
Biosci Rep ; 40(5)2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32319515

RESUMO

Diabetic retinopathy (DR) is the most common microvascular complication of diabetes and is characterized by visible microvascular alterations including retinal ischemia-reperfusion injury, inflammation, abnormal permeability, neovascularization and macular edema. Despite the available treatments, some patients present late in the course of the disease when treatment is more difficult. Hence, it is crucial that the new targets are found and utilized in the clinical therapy of DR. In the present study, we constructed a DR animal model and a model in HRMECs to investigate the relationship between p38 and RUNX1 in retinal micro-angiogenesis in diabetic retinopathy. We found that p38 could promote retinal micro-angiogenesis by up-regulating RUNX1 expression in diabetic retinopathy. This suggested that the p38/ RUNX1 pathway could become a new retinal micro-angiogenesis target in DR treatment.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Retinopatia Diabética/enzimologia , Células Endoteliais/enzimologia , Neovascularização Retiniana/enzimologia , Vasos Retinianos/enzimologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Glicemia/metabolismo , Linhagem Celular , Proliferação de Células , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/complicações , Retinopatia Diabética/etiologia , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Glucose/toxicidade , Humanos , Masculino , Camundongos Endogâmicos C57BL , Neovascularização Retiniana/etiologia , Neovascularização Retiniana/genética , Neovascularização Retiniana/patologia , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/patologia , Transdução de Sinais , Regulação para Cima
20.
Med Sci Monit ; 25: 7073-7078, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31539366

RESUMO

BACKGROUND Sorbitol-aldose reductase (polyol) pathway genes have been strongly linked to diabetic retinopathy. Polymorphisms in these genes may affect their functions and influence the risk of retinopathy. In this work, we investigated the influence of the rs759853 polymorphism of ALR2 gene and rs2055858 and rs3759890 polymorphisms of SDH gene on risk of diabetic retinopathy among Han Chinese. MATERIAL AND METHODS We included 3,000 subjects in our study, of which 1,500 were patients with diabetic retinopathy and 1,500 were controls without the said condition. Among the cases, 750 had the non-proliferative diabetic retinopathy (NPDR) and 750 had proliferative diabetic retinopathy (PDR). The polymorphisms were genotyped using established methods and logistic regression analysis was used to determine whether the polymorphisms were associated with risk of diabetic retinopathy. RESULTS We found that variants of ALR2 rs759853 polymorphism were significantly associated with an increased risk of diabetic retinopathy, whereas variants of SDH rs2055858 polymorphism were significantly associated with a lower risk. For the former, an odds ratio (OR) of 1.46 were noted for the heterozygous genotype (95% CI=1.25-1.70, P<0.01) and the homozygous variant genotype (OR=1.90, 95% CI=1.40-2.60, P<0.01). For SDH rs2055858 polymorphism, an OR of 0.51 (95% CI=0.43-0.61, P<0.01) and 0.34 (95% CI=0.28-0.42, P<0.01) was observed for heterozygous and homozygous variant genotype respectively. Subgroup analysis based on NPDR and PDR showed a similar finding as the combined results. CONCLUSIONS ALR2 rs759853 and SDH rs2055858 polymorphisms were respectively associated with a higher and lower risk of diabetic retinopathy.


Assuntos
Aldeído Redutase/genética , Povo Asiático/genética , Retinopatia Diabética/genética , Etnicidade/genética , Predisposição Genética para Doença , L-Iditol 2-Desidrogenase/genética , Polímeros/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Estudos de Casos e Controles , Retinopatia Diabética/enzimologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...